Integrating Micro Seismic and Conventional Seismic Data for Characterizing Fracture Network: A California Case Study

- Debottyam Maity
- Principal Engineer (E&P)
- Gas Technology Institute
OUTLINE

- Introduction
- Optimized passive seismic survey design
- Microseismic derived property estimation
- Seismic derived property estimation
- Hybrid FZI* attributes for identifying fractures
- Integrated interpretations through case study
- Conclusions

* Fracture Zone Identifier
PROBLEM DEFINITION

Motivation?

- Enhanced cross-disciplinary technology applications.
- How to work in highly data constrained & geologically challenging environments?
- Novel workflows to tackle said challenges.
- Maximize/ optimize use of available data.
- Improved algorithms to support analysis.

Fracture zone characterization

MEQ – Seismic joint interpretation

Improved velocity models

Discontinuity mapping

4D characterization framework
CHARACTERIZATION WORKFLOW

- 3D seismic
 - Data conditioning
 - Dip steered filtering
 - Well to seismic ties
 - Seismic attribute analysis
 - Multi-attribute/ANN
 - Reservoir property estimates

- Passive seismic
 - Data formatting
 - Auto-picking
 - Phase detection
 - Event locations
 - Tomographic inversion
 - COSGSIM
 - \(V_p \) & \(V_s \) (high resolution)

- Inversion uncertainty
- Estimation uncertainty
- Rock properties

- A-priori information on fracture zones
- Well Logs
- Image logs/production data, etc.
- Fracture zone identification framework

- ANN classification algorithm
- FZI maps
PASSIVE ARRAY OPTIMIZATION

QF = W₁ × QF₁ + W₂ × QF₂ (W₁ = 1.0 & W₂ = 0.0)

QF = W₁ × QF₁ + W₂ × QF₂ (W₁ = 0.0 & W₂ = 1.0)
LOCATION & VELOCITY INVERSION

Sample Vp and Vs maps at 1 Km depth level after SimulPS run
IMPROVED VELOCITY MODELS

Better estimate velocity (primary) based on seismic derived impedance (secondary)

Microseismic Data

- V_P & V_S
- Normal Score Transformation

Seismic Data

- Impedance Maps

COSGSIM

- Normal Score Transformed V_P & V_S
- Primary Variable

Final V_P Realizations

Final V_S Realizations

V_P Realizations (Gaussian Domain)

V_S Realizations (Gaussian Domain)

Inverse Normal Score Transformation
COSGSIM – INPUTS & RESULTS

VP at depth of 1 km

VS at depth of 1 km

VP simulation error

VS simulation error
ROCK PROPERTY ESTIMATES

\[\mu = \rho V_S^2 \]
\[\lambda = V_p^2 \rho - 2\mu \]

Mavko et al., 2003

\[V_E^2 = \frac{V_S^2(3V_P^2 - 4V_S^2)}{(V_P^2 - V_S^2)} \]
\[V_K^2 = V_P^2 - \frac{4}{3} V_S^2 \]

Tokosoz et al., 1981

\[F_E = \frac{(b - b_r)}{b_{\text{max}}} = e^{\alpha V_E} \]

Rutqvist et al., 2003

\[K = \lambda + \frac{2\mu}{3} \]
\[E = \frac{9K\lambda}{3K + \mu} \]
\[\sigma = \frac{\lambda}{2(\lambda + \mu)} \]

Beer et al., 2009

\[\Delta_N = \frac{4e}{3g(1 - g)} \]
\[\Delta_T = \frac{16e}{3(3 - 2g)} \]

Hsu et al., 1993

\[g = \left(\frac{V_S}{V_P} \right)^2 \]
PROPERTY ESTIMATION

Normalized fracture aperture expandability - F_E

[3D diagrams showing fracture aperture expandability across depth and inline directions.]
3D SEISMIC DERIVED ATTRIBUTES

density

discontinuity

frequency
CHARACTERIZATION FRAMEWORK

Martakis et al., 2006; Berryman et al., 2002; Berge et al., 2001; Boitnott, 2003, Downton et al., 2008

Effective pressure

↑ Vp & K

Fracture opening

↑ V_E & ↓ K

Fluid Saturation

↓ Vs or ↑ Vp/Vs & σ

Fractures

↓ Vp & Vs

Lithification

↑ Vp/Vs, μ & K or ↓ σ

Porosity

↓ Vp/Vs & K

Pore pressure

↓ Vp

Fracture density

↑ Δ_T

Gas

↓ Vp, Vs & K
HYBRID FZI ATTRIBUTE

TRAIN

FZI_3

TEST

FZI_4
MAPPED FRACTURE ATTRIBUTES

\[k_{Fi} \]

\[FZI_{3,4} \quad F: \quad k_{Fi} = n_{fn} FZI_A^3 / 12 \Delta T_n, \ V_{En} \]
OUTPUT UNCERTAINTIES

INVERSION

COSGSIM (V_p)

COSGSIM (V_s)

FZI UNCERTAINTY
MAPPED FRACTURE ATTRIBUTES
FRACTURED ZONES (V_E, Δ_T & FZI$_4$)

Horizon 3 (Testing)

V_E

Δ_T

FZI$_4$
DISCONTINUITY INTEGRATED FZI

FZI_4 integrated with discontinuity at 500m & 1000m depths
DISCONTINUITY INTEGRATED FZI
DISCONTINUITY, V_E & EDGE
FZI, STRESS GRADIENT, & EDGE
RESULTS & CONCLUSIONS

- Introduced workflow to use passive & active seismic data to characterize fractures in unconventional settings.

- Highlights:
 - High resolution velocity modeling with poor MEQ data quality (using seismic derived constraints & geostatistical simulation).
 - Framework for improved passive seismic survey design
 - Geomechanical property estimates for fracture zone identification using available rock physics framework (valid for sedimentary systems).
 - Introduction of newly defined hybrid “FZI” attributes to delineate fractured zones.
 - Framework for integrated analysis & interpretation to better understand reservoir behavior & plan future field development.
ACKNOWLEDGEMENTS

This work was supported by funding from both government and private entities. We would like to acknowledge Ormat Inc. and GTI (RPSEA) for providing us with the necessary data and other resources to conduct this study. We would like to thank dGB Earth Sciences and Mathworks for providing academic licenses for their software packages. We would also like to acknowledge continued support from ISC and RMC consortium members towards our research goals.

QUESTIONS?